Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Sci Total Environ ; 931: 172958, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38714255

RESUMEN

Mining activities put the Brazilian savannas, a global biodiversity hotspot, in danger of species and soil carbon losses. Experiments employing biosolids have been applied to rejuvenate this degraded ecosystem, but a lingering question yet to be answered is whether the microbiota that inhabits these impoverished soils can be recovered towards its initial steady state after vegetation recovery. Here, we selected an 18-year-old restoration chronosequence of biosolids-treated, untreated mining and native soils to investigate the soil microbiota recovery based on composition, phylogeny, and diversity, as well as the potential factors responsible for ecosystem recovery. Our results revealed that the soil microbiota holds a considerable recovery potential in the degraded Cerrado biome. Biosolids application not only improved soil health, but also led to 41.7 % recovery of the whole microbial community, featuring significantly higher microbiota diversity and enriched groups (e.g., Firmicutes) that benefit carbon storage compared to untreated mining and native soils. The recovered community showed significant compositional distinctions from the untreated mining or native soils, rather than phylogenetic differences, with physiochemical properties explaining 55 % of the overall community changes. This study advances our understanding of soil microbiota dynamics in response to disturbance and restoration by shedding light on its recovery associated with biosolid application in a degraded biodiverse ecosystem.

2.
Front Microbiol ; 15: 1356891, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585693

RESUMEN

Tropaeolum majus L. is a versatile edible plant that is widely explored due to its medicinal properties and as a key element in intercropping systems. Its growth could be improved by the use of biofertilizers that can enhance nutrient uptake by the plant or provide tolerance to different abiotic and biotic stresses. In a previous study, 101 endophytes isolated from T. majus roots showed more than three plant growth-promoting (PGP) features in vitro, such as phosphate mineralization/solubilization, production of siderophores, antimicrobial substances and indole-related compounds, and presence of the nifH gene. To provide sustainable alternatives for biofertilization, the genomes of two promising endophytes-CAPE95 and CAPE238-were sequenced to uncover metabolic pathways related to biofertilization. Greenhouse experiments were conducted with 216 seeds and 60 seedlings, half co-inoculated with the endophytes (treatment) and half inoculated with 1X PBS (control), and the impact of the co-inoculation on the plant's bacteriome was accessed through 16S rRNA gene metabarcoding. The strains CAPE95 and CAPE238 were taxonomically assigned as Bacillus thuringiensis and Paenibacillus polymyxa, respectively. Metabolic pathways related to the enhancement of nutrient availability (nitrogen fixation, sulfate-sulfur assimilation), biosynthesis of phytohormones (indole-3-acetic acid precursors) and antimicrobial substances (bacilysin, paenibacillin) were found in their genomes. The in vivo experiments showed that treated seeds exhibited faster germination, with a 20.3% higher germination index than the control on the eleventh day of the experiment. Additionally, treated seedlings showed significantly higher plant height and leaf diameters (p < 0.05). The bacterial community of the treated plants was significantly different from that of the control plants (p < 0.001) and showed a higher richness and diversity of species (Chao and Shannon indexes, p < 0.001). A higher relative abundance of potential synergistic PGP bacteria was also shown in the bacteriome of the treated plants, such as Lysinibacillus and Geobacter. For the first time, co-inoculation of B. thuringiensis and P. polymyxa was shown to have great potential for application as a biofertilizer to T. majus plants. The bacterial consortium used here could also be explored in other plant species in the future.

3.
Sci Total Environ ; 925: 171763, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38494030

RESUMEN

Microbial biofilms are behind microbiologically influenced corrosion (MIC). Sessile cells in biofilms are many times more concentrated volumetrically than planktonic cells in the bulk fluids, thus providing locally high concentrations of chemicals. More importantly, "electroactive" sessile cells in biofilms are capable of utilizing extracellularly supplied electrons (e.g., from elemental Fe) for intracellular reduction of an oxidant such as sulfate in energy metabolism. MIC directly caused by anaerobic biofilms is classified into two main types based on their mechanisms: extracellular electron transfer MIC (EET-MIC) and metabolite MIC (M-MIC). Sulfate-reducing bacteria (SRB) are notorious for their corrosivity. They can cause EET-MIC in carbon steel, but they can also secrete biogenic H2S to corrode other metals such as Cu directly via M-MIC. This study investigated the use of conductive magnetic nanowires as electron mediators to accelerate and thus identify EET-MIC of C1020 by Desulfovibrio vulgaris. The presence of 40 ppm (w/w) nanowires in ATCC 1249 culture medium at 37 °C resulted in 45 % higher weight loss and 57 % deeper corrosion pits after 7-day incubation. Electrochemical tests using linear polarization resistance and potentiodynamic polarization supported the weight loss data trend. These findings suggest that conductive magnetic nanowires can be employed to identify EET-MIC. The use of insoluble 2 µm long nanowires proved that the extracellular section of the electron transfer process is a bottleneck in SRB MIC of carbon steel.


Asunto(s)
Desulfovibrio vulgaris , Desulfovibrio , Nanocables , Humanos , Acero , Electrones , Carbono/metabolismo , Biopelículas , Desulfovibrio/metabolismo , Corrosión , Sulfatos/metabolismo , Pérdida de Peso
4.
Biomedicines ; 12(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38540163

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are closely related liver conditions that have become more prevalent globally. This review examines the intricate interplay between microbiome dysbiosis and mitochondrial dysfunction in the development of NAFLD and NASH. The combination of these two factors creates a synergistic situation referred to as "double trouble", which promotes the accumulation of lipids in the liver and the subsequent progression from simple steatosis (NAFLD) to inflammation (NASH). Microbiome dysbiosis, characterized by changes in the composition of gut microbes and increased intestinal permeability, contributes to the movement of bacterial products into the liver. It triggers metabolic disturbances and has anti-inflammatory effects. Understanding the complex relationship between microbiome dysbiosis and mitochondrial dysfunction in the development of NAFLD and NASH is crucial for advancing innovative therapeutic approaches that target these underlying mechanisms.

5.
Curr Res Microb Sci ; 6: 100226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425506

RESUMEN

The study of the whole of the genetic material contained within the microbial populations found in a certain environment is made possible by metagenomics. This technique enables a thorough knowledge of the variety, function, and interactions of microbial communities that are notoriously difficult to research. Due to the limitations of conventional techniques such as culturing and PCR-based methodologies, soil microbiology is a particularly challenging field. Metagenomics has emerged as an effective technique for overcoming these obstacles and shedding light on the dynamic nature of the microbial communities in soil. This review focuses on the principle of metagenomics techniques, their potential applications and limitations in soil microbial diversity analysis. The effectiveness of target-based metagenomics in determining the function of individual genes and microorganisms in soil ecosystems is also highlighted. Targeted metagenomics, including high-throughput sequencing and stable-isotope probing, is essential for studying microbial taxa and genes in complex ecosystems. Shotgun metagenomics may reveal the diversity of soil bacteria, composition, and function impacted by land use and soil management. Sanger, Next Generation Sequencing, Illumina, and Ion Torrent sequencing revolutionise soil microbiome research. Oxford Nanopore Technology (ONT) and Pacific Biosciences (PacBio)'s third and fourth generation sequencing systems revolutionise long-read technology. GeoChip, clone libraries, metagenomics, and metabarcoding help comprehend soil microbial communities. The article indicates that metagenomics may improve environmental management and agriculture despite existing limitations.Metagenomics has revolutionised soil microbiology research by revealing the complete diversity, function, and interactions of microorganisms in soil. Metagenomics is anticipated to continue defining the future of soil microbiology research despite some limitations, such as the difficulty of locating the appropriate sequencing method for specific genes.

6.
Trends Microbiol ; 32(3): 252-269, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37758552

RESUMEN

The provision of probiotics benefits the health of a wide range of organisms, from humans to animals and plants. Probiotics can enhance stress resilience of endangered organisms, many of which are critically threatened by anthropogenic impacts. The use of so-called 'probiotics for wildlife' is a nascent application, and the field needs to reflect on standards for its development, testing, validation, risk assessment, and deployment. Here, we identify the main challenges of this emerging intervention and provide a roadmap to validate the effectiveness of wildlife probiotics. We cover the essential use of inert negative controls in trials and the investigation of the probiotic mechanisms of action. We also suggest alternative microbial therapies that could be tested in parallel with the probiotic application. Our recommendations align approaches used for humans, aquaculture, and plants to the emerging concept and use of probiotics for wildlife.


Asunto(s)
Animales Salvajes , Probióticos , Animales , Humanos , Acuicultura
7.
Microbiol Res ; 274: 127443, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37399654

RESUMEN

Molecular biology techniques like gene editing have altered the specific genes in micro-organisms to increase their efficiency to produce biofuels. This review paper investigates the outcomes of Clustered regularly interspaced short palindromic repeats (CRISPR) for gene editing in extremophilic micro-organisms to produce biofuel. Commercial production of biofuel from lignocellulosic waste is limited due to various constraints. A potential strategy to enhance the capability of extremophiles to produce biofuel is gene-editing via CRISPR-Cas technology. The efficiency of intracellular enzymes like cellulase, hemicellulose in extremophilic bacteria, fungi and microalgae has been increased by alteration of genes associated with enzymatic activity and thermotolerance. extremophilic microbes like Thermococcus kodakarensis, Thermotoga maritima, Thermus thermophilus, Pyrococcus furiosus and Sulfolobus sp. are explored for biofuel production. The conversion of lignocellulosic biomass into biofuels involves pretreatment, hydrolysis and fermentation. The challenges like off-target effect associated with use of extremophiles for biofuel production is also addressed. The appropriate regulations are required to maximize effectiveness while minimizing off-target cleavage, as well as the total biosafety of this technique. The latest discovery of the CRISPR-Cas system should provide a new channel in the creation of microbial biorefineries through site- specific gene editing that might boost the generation of biofuels from extremophiles. Overall, this review study highlights the potential for genome editing methods to improve the potential of extremophiles to produce biofuel, opening the door to more effective and environmentally friendly biofuel production methods.


Asunto(s)
Extremófilos , Edición Génica , Edición Génica/métodos , Biocombustibles , Sistemas CRISPR-Cas , Bacterias/genética
8.
Front Microbiol ; 14: 1167718, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333658

RESUMEN

More than 20,000 species of prokaryotes (less than 1% of the estimated number of Earth's microbial species) have been described thus far. However, the vast majority of microbes that inhabit extreme environments remain uncultured and this group is termed "microbial dark matter." Little is known regarding the ecological functions and biotechnological potential of these underexplored extremophiles, thus representing a vast untapped and uncharacterized biological resource. Advances in microbial cultivation approaches are key for a detailed and comprehensive characterization of the roles of these microbes in shaping the environment and, ultimately, for their biotechnological exploitation, such as for extremophile-derived bioproducts (extremozymes, secondary metabolites, CRISPR Cas systems, and pigments, among others), astrobiology, and space exploration. Additional efforts to enhance culturable diversity are required due to the challenges imposed by extreme culturing and plating conditions. In this review, we summarize methods and technologies used to recover the microbial diversity of extreme environments, while discussing the advantages and disadvantages associated with each of these approaches. Additionally, this review describes alternative culturing strategies to retrieve novel taxa with their unknown genes, metabolisms, and ecological roles, with the ultimate goal of increasing the yields of more efficient bio-based products. This review thus summarizes the strategies used to unveil the hidden diversity of the microbiome of extreme environments and discusses the directions for future studies of microbial dark matter and its potential applications in biotechnology and astrobiology.

9.
Front Microbiol ; 14: 1142582, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025627

RESUMEN

Paenibacillus antarcticus IPAC21, an endospore-forming and bioemulsifier-producing strain, was isolated from King George Island, Antarctica. As psychrotolerant/psychrophilic bacteria can be considered promising sources for novel products such as bioactive compounds and other industrially relevant substances/compounds, the IPAC21 genome was sequenced using Illumina Hi-seq, and a search for genes related to the production of bioemulsifiers and other metabolic pathways was performed. The IPAC21 strain has a genome of 5,505,124 bp and a G + C content of 40.5%. Genes related to the biosynthesis of exopolysaccharides, such as the gene that encodes the extracellular enzyme levansucrase responsible for the synthesis of levan, the 2,3-butanediol pathway, PTS sugar transporters, cold-shock proteins, and chaperones were found in its genome. IPAC21 cell-free supernatants obtained after cell growth in trypticase soy broth at different temperatures were evaluated for bioemulsifier production by the emulsification index (EI) using hexadecane, kerosene and diesel. EI values higher than 50% were obtained using the three oil derivatives when IPAC21 was grown at 28°C. The bioemulsifier produced by P. antarcticus IPAC21 was stable at different NaCl concentrations, low temperatures and pH values, suggesting its potential use in lower and moderate temperature processes in the petroleum industry.

10.
Commun Biol ; 6(1): 230, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859706

RESUMEN

A thermophilic, chemolithoautotrophic, and aerobic microbial consortium (termed carbonitroflex) growing in a nutrient-poor medium and an atmosphere containing N2, O2, CO2, and CO is investigated as a model to expand our understanding of extreme biological systems. Here we show that the consortium is dominated by Carbonactinospora thermoautotrophica (strain StC), followed by Sphaerobacter thermophilus, Chelatococcus spp., and Geobacillus spp. Metagenomic analysis of the consortium reveals a mutual relationship among bacteria, with C. thermoautotrophica StC exhibiting carboxydotrophy and carbon-dioxide storage capacity. C. thermoautotrophica StC, Chelatococcus spp., and S. thermophilus harbor genes encoding CO dehydrogenase and formate oxidase. No pure cultures were obtained under the original growth conditions, indicating that a tightly regulated interactive metabolism might be required for group survival and growth in this extreme oligotrophic system. The breadwinner hypothesis is proposed to explain the metabolic flux model and highlight the vital role of C. thermoautotrophica StC (the sole keystone species and primary carbon producer) in the survival of all consortium members. Our data may contribute to the investigation of complex interactions in extreme environments, exemplifying the interconnections and dependency within microbial communities.


Asunto(s)
Actinobacteria , Alphaproteobacteria , Bacillaceae , Ambientes Extremos , Carbono
11.
Front Microbiol ; 14: 1106422, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36925466

RESUMEN

Mixed tree plantations have been studied because of their potential to improve biomass production, ecosystem diversity, and soil quality. One example is a mixture of Eucalyptus and Acacia trees, which is a promising strategy to improve microbial diversity and nutrient cycling in soil. We examined how a mixture of these species may influence the biochemical attributes and fungal community associated with leaf litter, and the effects on litter decomposition. We studied the litter from pure and mixed plantations, evaluating the effects of plant material and incubation site on the mycobiome and decomposition rate using litterbags incubated in situ. Our central hypothesis was litter fungal community would change according to incubation site, and it would interfere in litter decomposition rate. Both the plant material and the incubation locale significantly affected the litter decomposition. The origin of the litter was the main modulator of the mycobiome, with distinct communities from one plant species to another. The community changed with the incubation time but the incubation site did not influence the mycobiome community. Our data showed that litter and soil did not share the main elements of the community. Contrary to our hypothesis, the microbial community structure and diversity lacked any association with the decomposition rate. The differences in the decomposition pattern are explained basically as a function of the exchange of nitrogen compounds between the litter.

12.
Methods Mol Biol ; 2588: 91-104, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36418684

RESUMEN

In their natural environments, microorganisms usually live in organized communities. Profiling analysis of microbial communities has recently assumed special relevance as it allows a thorough understanding of the diversity of the microbiota, its behavior over time, and the establishment of patterns associated with health and disease. The application of molecular biology approaches holds the advantage of including culture-difficult and as-yet-uncultivated phylotypes in the profiles, providing a more comprehensive picture of the microbial community. This chapter focuses on two particular techniques, namely terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE), both of which have been widely used in environmental studies and have been recently successfully used by the authors in the study of the oral microbial communities associated with conditions of health and disease.


Asunto(s)
Microbiota , Polimorfismo de Longitud del Fragmento de Restricción , Electroforesis en Gel de Gradiente Desnaturalizante , Microbiota/genética , Biología Molecular
13.
J Adv Res ; 47: 75-92, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35918056

RESUMEN

BACKGROUND: Autotrophic carbon fixation is the primary route through which organic carbon enters the biosphere, and it is a key step in the biogeochemical carbon cycle. The Calvin-Benson-Bassham pathway, which is predominantly found in plants, algae, and some bacteria (mainly cyanobacteria), was previously considered to be the sole carbon-fixation pathway. However, the discovery of a new carbon-fixation pathway in sulfurous green bacteria almost two decades ago encouraged further research on previously overlooked ancient carbon-fixation pathways in taxonomically and phylogenetically distinct microorganisms. AIM OF REVIEW: In this review, we summarize the six known natural carbon-fixation pathways and outline the newly proposed additions to this list. We also discuss the recent achievements in synthetic carbon fixation and the importance of the metabolism of thermophilic microorganisms in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW: Currently, at least six carbon-fixation routes have been confirmed in Bacteria and Archaea. Other possible candidate routes have also been suggested on the basis of emerging "omics" data analyses, expanding our knowledge and stimulating discussions on the importance of these pathways in the way organisms acquire carbon. Notably, the currently known natural fixation routes cannot balance the excessive anthropogenic carbon emissions in a highly unbalanced global carbon cycle. Therefore, significant efforts have also been made to improve the existing carbon-fixation pathways and/or design new efficient in vitro and in vivo synthetic pathways.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Dióxido de Carbono/metabolismo , Bacterias/genética , Bacterias/metabolismo , Archaea/genética , Archaea/metabolismo , Ciclo del Carbono , Plantas/metabolismo
15.
Anaerobe ; 77: 102629, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35985606

RESUMEN

Archaea comprise a unique domain of organisms with distinct biochemical and genetic differences from bacteria. Methane-forming archaea, methanogens, constitute the predominant group of archaea in the human gut microbiota, with Methanobrevibacter smithii being the most prevalent. However, the effect of methanogenic archaea and their methane production on chronic disease remains controversial. As perturbation of the microbiota is a feature of chronic conditions, such as cardiovascular disease, neurodegenerative diseases and chronic kidney disease, assessing the influence of archaea could provide a new clue to mitigating adverse effects associated with dysbiosis. In this review, we will discuss the putative role of archaea in the gut microbiota in humans and the possible link to chronic diseases.


Asunto(s)
Euryarchaeota , Microbioma Gastrointestinal , Humanos , Archaea/genética , Methanobrevibacter/genética , Metano , Enfermedad Crónica
16.
Microorganisms ; 10(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36014090

RESUMEN

Antarctica is a mosaic of extremes. It harbors active polar volcanoes, such as Deception Island, a marine stratovolcano having notable temperature gradients over very short distances, with the temperature reaching up to 100 °C near the fumaroles and subzero temperatures being noted in the glaciers. From the sediments of Deception Island, we isolated representatives of the genus Anoxybacillus, a widely spread genus that is mainly encountered in thermophilic environments. However, the phylogeny of this genus and its adaptive mechanisms in the geothermal sites of cold environments remain unknown. To the best of our knowledge, this is the first study to unravel the genomic features and provide insights into the phylogenomics and metabolic potential of members of the genus Anoxybacillus inhabiting the Antarctic thermophilic ecosystem. Here, we report the genome sequencing data of seven A. flavithermus strains isolated from two geothermal sites on Deception Island, Antarctic Peninsula. Their genomes were approximately 3.0 Mb in size, had a G + C ratio of 42%, and were predicted to encode 3500 proteins on average. We observed that the strains were phylogenomically closest to each other (Average Nucleotide Identity (ANI) > 98%) and to A. flavithermus (ANI 95%). In silico genomic analysis revealed 15 resistance and metabolic islands, as well as genes related to genome stabilization, DNA repair systems against UV radiation threats, temperature adaptation, heat- and cold-shock proteins (Csps), and resistance to alkaline conditions. Remarkably, glycosyl hydrolase enzyme-encoding genes, secondary metabolites, and prophage sequences were predicted, revealing metabolic and cellular capabilities for potential biotechnological applications.

17.
Antibiotics (Basel) ; 11(8)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35892375

RESUMEN

Pseudomonas spp. are ubiquitous microorganisms that exhibit intrinsic and acquired resistance to many antimicrobial agents. Pseudomonas aeruginosa is the most studied species of this genus due to its clinical importance. In contrast, the Pseudomonas fluorescens complex consists of environmental and, in some cases, pathogenic opportunistic microorganisms. The records of antimicrobial-resistant P. fluorescens are quite scattered, which hinders the recognition of patterns. This review compiles published data on antimicrobial resistance in species belonging to the P. fluorescens complex, which were identified through phylogenomic analyses. Additionally, we explored the occurrence of clinically relevant antimicrobial resistance genes in the genomes of the respective species available in the NCBI database. Isolates were organized into two categories: strains isolated from pristine sites and strains isolated from human-impacted or metal-polluted sites. Our review revealed that many reported resistant phenotypes in this complex might be related to intrinsic features, whereas some of them might be ascribed to adaptive mechanisms such as colistin resistance. Moreover, a few studies reported antimicrobial resistance genes (ARGs), mainly ß-lactamases. In-silico analysis corroborated the low occurrence of transferable resistance mechanisms in this Pseudomonas complex. Both phenotypic and genotypic assays are necessary to gain insights into the evolutionary aspects of antimicrobial resistance in the P. fluorescens complex and the possible role of these ubiquitous species as reservoirs of clinically important and transmissible ARGs.

18.
mSystems ; 7(4): e0036722, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35862824

RESUMEN

The vast majority of environmental microbes have not yet been cultured, and most of the knowledge on coral-associated microbes (CAMs) has been generated from amplicon sequencing and metagenomes. However, exploring cultured CAMs is key for a detailed and comprehensive characterization of the roles of these microbes in shaping coral health and, ultimately, for their biotechnological use as, for example, coral probiotics and other natural products. Here, the strategies and technologies that have been used to access cultured CAMs are presented, while advantages and disadvantages associated with each of these strategies are discussed. We highlight the existing gaps and potential improvements in culture-dependent methodologies, indicating several possible alternatives (including culturomics and in situ diffusion devices) that could be applied to retrieve the CAM "dark matter" (i.e., the currently undescribed CAMs). This study provides the most comprehensive synthesis of the methodologies used to recover the cultured coral microbiome to date and draws suggestions for the development of the next generation of CAM culturomics.


Asunto(s)
Antozoos , Microbiota , Animales , Bacterias/genética , Microbiota/genética , Metagenoma , Biotecnología
19.
Nat Microbiol ; 7(11): 1726-1735, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35864220

RESUMEN

Global biodiversity loss and mass extinction of species are two of the most critical environmental issues the world is currently facing, resulting in the disruption of various ecosystems central to environmental functions and human health. Microbiome-targeted interventions, such as probiotics and microbiome transplants, are emerging as potential options to reverse deterioration of biodiversity and increase the resilience of wildlife and ecosystems. However, the implementation of these interventions is urgently needed. We summarize the current concepts, bottlenecks and ethical aspects encompassing the careful and responsible management of ecosystem resources using the microbiome (termed microbiome stewardship) to rehabilitate organisms and ecosystem functions. We propose a real-world application framework to guide environmental and wildlife probiotic applications. This framework details steps that must be taken in the upscaling process while weighing risks against the high toll of inaction. In doing so, we draw parallels with other aspects of contemporary science moving swiftly in the face of urgent global challenges.


Asunto(s)
Conservación de los Recursos Naturales , Microbiota , Animales , Humanos , Conservación de los Recursos Naturales/métodos , Biodiversidad , Animales Salvajes
20.
Front Microbiol ; 13: 885557, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602031

RESUMEN

Extreme temperature gradients in polar volcanoes are capable of selecting different types of extremophiles. Deception Island is a marine stratovolcano located in maritime Antarctica. The volcano has pronounced temperature gradients over very short distances, from as high as 100°C in the fumaroles to subzero next to the glaciers. These characteristics make Deception a promising source of a variety of bioproducts for use in different biotechnological areas. In this study, we isolated thermophilic bacteria from sediments in fumaroles at two geothermal sites on Deception Island with temperatures between 50 and 100°C, to evaluate the potential capacity of these bacteria to degrade petroleum hydrocarbons and produce biosurfactants under thermophilic conditions. We isolated 126 thermophilic bacterial strains and identified them molecularly as members of genera Geobacillus, Anoxybacillus, and Brevibacillus (all in phylum Firmicutes). Seventy-six strains grew in a culture medium supplemented with crude oil as the only carbon source, and 30 of them showed particularly good results for oil degradation. Of 50 strains tested for biosurfactant production, 13 showed good results, with an emulsification index of 50% or higher of a petroleum hydrocarbon source (crude oil and diesel), emulsification stability at 100°C, and positive results in drop-collapse, oil spreading, and hemolytic activity tests. Four of these isolates showed great capability of degrade crude oil: FB2_38 (Geobacillus), FB3_54 (Geobacillus), FB4_88 (Anoxybacillus), and WB1_122 (Geobacillus). Genomic analysis of the oil-degrading and biosurfactant-producer strain FB4_88 identified it as Anoxybacillus flavithermus, with a high genetic and functional diversity potential for biotechnological applications. These initial culturomic and genomic data suggest that thermophilic bacteria from this Antarctic volcano have potential applications in the petroleum industry, for bioremediation in extreme environments and for microbial enhanced oil recovery (MEOR) in reservoirs. In addition, recovery of small-subunit rRNA from metagenomes of Deception Island showed that Firmicutes is not among the dominant phyla, indicating that these low-abundance microorganisms may be important for hydrocarbon degradation and biosurfactant production in the Deception Island volcanic sediments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...